QUANTUM CHEMISTRY

Dr. A. DAYALAN, Former Professor \& Head, Dept. of Chemistry, LOYOLA COLLEGE (Autonomous), Chennai - 34
 QC-1.1-COORDINATE SYSTEMS

1) CARTESIAN COORDINATES

Cartesian coordinates in two dimensions(x, y)

A two dimensional plane with x and y-axes defined is referred to as the Cartesian plane or $x y$ (horizontal) plane. The \boldsymbol{x}-coordinate is called ABSCISSA and the \boldsymbol{y}-coordinate is called ORDINATE.

Cartesian coordinates in three dimensions(x, y, z)

The Cartesian coordinate ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) represents the perpendicular distances along x, y \& z axis

$$
-\infty<\mathrm{X}<+\infty \quad ; \quad-\infty<\mathrm{y}<+\infty ;-\infty<\mathrm{Z}<+\infty
$$

Distance between two points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right) \&\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right), \mathrm{d}=\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}\right]^{1 / 2}$
Distance from the origin to the point $(x, y, z), r^{2}=x^{2}+y^{2}+z^{2}$
Horizontal plane σ_{xy}
Vertical plane is the one which contains the z-axis $\left(\sigma_{\mathrm{zx}}, \sigma_{\mathrm{zy}}\right)$
Applications of Cartesian coordinate system: This coordinate system is used for the study quantum systems like Particle in a box (1D \& 2D); Harmonic oscillator; Analysis of vibration \& Normal modes of vibration.

2) SPHERICAL POLAR COORDINAES(r, $\theta, \varphi)$

Spherical coordinates (r, θ, φ) :Radialdistance r, polar angle θ and azimuthal angle φ.

$$
r>0 ; \quad 0 \leq \theta \leq \pi ; \quad 0 \leq \varphi<2 \pi
$$

SPHERICALPOLAR coordinates (r, θ, φ) from CARTESIAN coordinates

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \varphi=\tan ^{-1}(\mathrm{y} / \mathrm{x}) \\
& \Theta=\cos ^{-1}(\mathrm{z} / \mathrm{r})
\end{aligned}
$$

CARTESIAN coordinates from SPHERICAL polar coordinates

Conversely, the Cartesian coordinates may be retrieved from the spherical coordinates as follows :

$$
\begin{aligned}
& \text { " }=\text { w } \\
& 2=8 \cos \theta
\end{aligned}
$$

Applications of spherical polar coordinate system:Rigidrotor; Hydrogen atom

3) CYLINDRICAL COORDINATES ($\mathrm{p}, \theta, \mathrm{z}$)

Cylindrical coordinates are three dimensional representation involving height (z) along z axis ,pknown as radial coordinate and $\theta_{\text {as }}$ azimuthal coordinate.

$$
\text { Where, } 0 \leq \mathrm{p} \leq \infty ; \quad 0 \leq e \leq 2 \pi ; \quad-\infty \leq \mathrm{z} \leq+\infty .
$$

CYLINDRICAL to CARTESIAN coordinates

$$
\mathrm{p}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{1 / 2} ; \quad \theta=\tan ^{-1}(\mathrm{y} / \mathrm{x}) ; \quad \mathrm{z}=\mathrm{z}
$$

CARTESIAN to CYLINDRICAL coordinates

$$
\mathrm{x}=\mathrm{p} \cos \theta ; \quad \mathrm{y}=\mathrm{p} \sin \theta ; \quad \mathrm{z}=\mathrm{z}
$$

Applications of cylindrical coordinate system:Acetylene\& olefin π-electron systems.

4) ELLIPTICAL COORDINATES (λ, μ, φ)

Where the elliptical coordinate is defined as follows (A.K.Chandra p-165)

$$
\begin{array}{ll}
\lambda=------\quad 1 \leq \lambda \leq \infty \\
R & \\
\mu=------r_{A}+r_{B} & -1 \leq \mu \leq+1 \\
R & \\
\phi=\phi & 0 \leq \phi \leq 2 \pi \text { (Same as the coordinate used in spherical polar coordinate) }
\end{array}
$$

CARTESIAN COORDINATES are related to ELLIPTICAL coordinates as follows
$:=\frac{R}{2} \cos \phi \sqrt{\left(\lambda^{2}-1\right)\left(1-\mu^{2}\right)}$
$y=\frac{R}{2} \sin \phi \sqrt{\left(\lambda^{2}-1\right)\left(1-\mu^{2}\right)}$
$z=1 / 2(R \lambda \mu)$
$r^{2}=x^{2}+y^{2}+z^{2}=(R / 2)^{2}\left(\lambda^{2}+\mu^{2}-1\right)$
Applications of elliptical coordinate system: Hydrogen molecular ion \& related systems.

