QUANTUM CHEMISTRY

Dr. A. DAYALAN, Former Professor \& Head, Dept. of Chemistry,

LOYOLA COLLEGE (Autonomous), Chennai-34

QC-1.2-FUNCTIONS

I. REAL AND COMPLEX FUNCTIONS.

$\Psi_{1}=$ Asinx (Real)
$\Psi_{2}=\mathrm{iAsinx}$ (Imaginary)
$\Psi_{3}=\mathrm{A} \sin \mathrm{x}+\mathrm{i} \mathrm{A} \sin \mathrm{x}$ (Complex)
$\Psi_{4}=-\mathrm{i} A \sin \mathrm{x}\left(\right.$ Complex conjugate of $\left.\Psi_{2}\right)=\Psi_{2}{ }^{*}$
$\Psi_{2} \& \Psi_{4}$ are complex conjugate to each other
$\Psi_{5}=$ Asinx-iAsinx $\left(\right.$ Complex conjugate of $\left.\Psi_{3}\right)=\Psi_{3}{ }^{*}$
$\Psi_{3} \& \Psi_{5}$ are complex conjugate to each other
$\Psi_{1}=\Psi_{1}{ }^{*}\left(\Psi_{1}\right.$ is real $)$
NB:
$\Psi=\Psi^{*}(\Psi$ is real $)$
$\Psi \Psi^{*}$ (is real)
$z=r(\cos \theta+i \sin \theta)$
$z^{n}=r^{n} e^{i n \theta}=r^{n}(\cos \theta+i \sin \theta)^{n}$
$=r^{n}(\cos n \theta+i \operatorname{sinn} \theta):$ Demoviour theorem.

Linear combinations

$\Psi_{6}=A \sin x+i B \sin x(C o m p l e x)$
$\Psi_{7}=A \sin x+i B \cos x(C o m p l e x)$
$\Psi_{8}=A \sin x-\mathrm{iB} \sin \mathrm{x}$ (Complex)
$\Psi_{9}=$ Asinx $-\mathrm{iB} \cos \mathrm{x}$ (Complex)
HW:
Let

$$
\begin{aligned}
& \Psi_{1}=\mathrm{A} \sin \mathrm{x} \quad ; \Psi_{2}=-\mathrm{i} \sin \mathrm{x} \\
& \Psi_{3}=\mathrm{A}(\sin \mathrm{x}+\mathrm{i} \sin \mathrm{x}) ; \Psi_{4}=\mathrm{A}(\sin \mathrm{x}-\mathrm{i} \sin \mathrm{x}) \\
& \Psi_{5}=\mathrm{Ae} \mathrm{i} \mathrm{x} \mathrm{x}=\mathrm{A}(\cos \mathrm{x} \mathrm{x}+\mathrm{i} \sin \mathrm{x} \mathrm{x})=\mathrm{A}(\cos \mathrm{x}+\mathrm{i} \sin \mathrm{x})^{\mathrm{m}} \\
& \Psi_{6}=\mathrm{Ae}^{-\mathrm{imx}}=\mathrm{A}(\cos \mathrm{x} \mathrm{x}-\mathrm{i} \sin \mathrm{x})=\mathrm{A}(\cos \mathrm{x}-\mathrm{i} \sin \mathrm{x})^{\mathrm{m}}
\end{aligned}
$$

Determine the following: (i) $\Psi_{3} \Psi_{3}{ }^{*}$ (ii) $\Psi_{3}{ }^{2}$ (iii) $\Psi_{6}{ }^{*}$ (iv) $\Psi_{6} \Psi_{6}{ }^{*}$

II. ODD FUNCTIONS

* A function $\mathrm{f}(\mathrm{x})$ is said to be "odd" if for every " x ", there exists "- x " in the domain of the function such that : $f(-x)=-f(x)$
* Let $\mathrm{f}(\mathrm{x})=\sin \mathrm{x} ; \mathrm{f}(-\mathrm{x})=\sin (-\mathrm{x})=-\sin \mathrm{x}=-\mathrm{f}(\mathrm{x})$
* An odd function is anti symmetric about y-axis.

* Examples: $\mathrm{x}, \mathrm{x}^{3}, \sin \mathrm{x}, \sinh \mathrm{x}, a \mathrm{x}^{2}+\mathrm{bx} ; a \mathrm{x}^{2}+\mathrm{bx}+\mathrm{c}$

III. EVEN FUNCTIONS

$>$ A function $\mathrm{f}(\mathrm{x})$ is said to be "even" if for every "x", there exists "-x" in the domain of the function such that : $f(-x)=f(x)$
$>$ Let $\mathrm{f}(\mathrm{x})=\cos \mathrm{x} ; \mathrm{f}(-\mathrm{x})=\cos (-\mathrm{x})=\cos \mathrm{x}=\mathrm{f}(\mathrm{x})$
$>$ An even function is symmetric about y -axis.

\rightarrow Examples: $\mathrm{x}^{2}, \mathrm{x}^{4}, \cos \mathrm{x}, \cosh \mathrm{x}, \mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}, \mathrm{ax}^{2}, \mathrm{ax}^{2}+\mathrm{c}$

Problem 1: Prove that the function $f(x)$ is even

$$
f(x)=\frac{\mathbf{a}^{\mathrm{x}}-1}{\mathbf{x}^{--\cdots---}} \underset{\mathbf{a}^{\mathrm{x}}+\mathbf{1}}{ }
$$

IV. BASIC PROPERTIES OF ODD AND EVEN FUNCTIONS

* The sum of an even and odd function is neither even nor odd: $\sin x+\cos x$
* The sum of two even functions is even, and any constant multiple of an even function is even.
* The sum of two odd functions is odd, and any constant multiple of an odd function is odd.

$$
\begin{aligned}
& \mathrm{x}^{4}+2 \mathrm{x}^{2}+6 \text { is even } \\
& \mathrm{x}^{2} \cos (\mathrm{x}) \text { is even } \\
& \mathrm{x}^{3} \cos (\mathrm{x}) \text { is odd } \\
& 5 \mathrm{x}^{7}+4 \sin (\mathrm{x}) \text { is odd }
\end{aligned}
$$

* The product of two even functions is an even function.
* The product of two odd functions is an even function.
* The product of an even function and an odd function is an odd function.
* The quotient of two even functions is an even function.
* The quotient of two odd functions is an even function.
* The quotient of an even function and an odd function is an odd function.

$\mathrm{f}(\mathrm{x})$	$\mathrm{g}(\mathrm{x})$	$\mathrm{f}(\mathrm{x}) \pm \mathrm{g}(\mathrm{x})$	$\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})$	$\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})$
Odd	odd	odd	even	even
odd	even	neither	odd	odd
even	even	even	even	even

While some functions are neither even nor odd

$$
x^{4}+6 x+1 ; \cos (x)+x^{5} ; x^{3}+1 ; \quad \ln (x) ; a^{x} ; e^{-i m x} ; e^{\operatorname{im} x}
$$

* The derivative of an even function is odd.
* The derivative of an odd function is even.
* The integral of an odd function from $-A$ to $+A$ is zero .
* The integral of an even function from $-A$ to $+A$ is twice the integral from 0 to $+A$ (Half interval).
* Determine each function given below as even, odd or neither.

1. $x^{4}+6 x^{2}+1$
2. $x \cos (x)+x^{3} ; \quad x \sin x$
3. $1 / x$
4. $3 x+9$
5. $\sin \left(x^{2}\right) ; \sin ^{2} x ; \quad \sin \left(x^{2}\right) ; \quad \sin ^{2} x^{2}$
6. $x^{3}+1$
7. $\sin ^{3}(x)$
8. $\sin ^{2}\left(x^{2}\right)+x^{2}+1$
V.CLOSED INTERVAL is an interval that includes the extreme limits : $\mathbf{a} \leq \mathrm{x} \leq \mathbf{b}$.
VI. OPEN INTERVAL is an interval that does not include the extreme limits :

a<x $<$ b

VII. ORTHOGONALFUNCTIONS

Two functions $\psi_{1} \& \psi_{2}$ are said to be orthogonal in the range $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ if the integral $\int \Psi_{1} \psi_{2} \mathbf{d x}=\mathbf{0}$ in the range $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$.
Examples: $\mathrm{A} \sin (\mathrm{nx}), \mathrm{B} \cos (\mathrm{nx})$ for integral values of n .

VIII.NORMALIZED FUNCTIONS

A function ψ is said to be normalized in the range $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ if the integral $\int \psi \psi^{*} d x=1$ in the range $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$.

* Normalize $\left(-x^{2} / 2\right) \& A x^{2}$ in the range $(-a,+a)$
* Normalize Asinx \& Bcosx for $0 \leq x \leq \pi / 2$
* Normalize Asinx \& Bcosx in the range $(0, \pi)$
* Normalize Ae^{x} in the range $(0,1)$

IX. ORTHONORMAL SET OF FUNCTIONS

A set of function, in a given range of limits, such that each one is normalized and orthogonal to each other

Examples:

($2 / 1)^{1 / 2} \sin (n \pi x / l)$, for integral values of n and for $0 \leq x \leq 1$.
> $(1 / 2 \pi)^{1 / 2} \mathrm{e}^{-\mathrm{imx}}$ for integral values of m and for $0 \leq \mathrm{x} \leq 2 \pi$

X.WELBEHAVED WAVE FUNCTIONS (Acceptable wave function)

Single valued, Continuous, Normalized, Orthogonal \& should disappear at the extreme limits

XI. DIFFERENTIALEQUATIONS

dy
$----=A x+k \quad$ ORdy $=(A x+k) d x$

XII. ORDER AND DEGREE.

Order: The number of the highest derivative in a differential equation.

$$
\begin{aligned}
& \text { dy } \\
& ---=\mathrm{Ax}+\mathrm{k} \quad \text { order: } 1 \text {; degree: } 1 \\
& \text { dx } \\
& d^{2} y \\
& ---{ }^{-2}=A x+k \quad \text { order: } 2 \text {; degree: } 1 \\
& \left\{\begin{array}{l}
\mathrm{dy}^{2} \\
----\mathrm{dx} \\
\mathrm{dx}
\end{array}\right\}=\mathrm{Ax} \quad \text { order: } 1 \text {; degree: } 2 \\
& \left\{\begin{array}{c}
d^{2} y \\
--- \\
d x^{2}
\end{array}\right\}=A x+k \quad \text { order: } 2 \text {; degree: } 1
\end{aligned}
$$

$$
\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)^{3}+\frac{\mathrm{d} y}{\mathrm{~d} x}=\sin x \quad \text { order } 2 \text { and degree } 3
$$

$$
\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}+4 x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}=y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\mathrm{e}^{y} \quad \text { order } 3 \quad \text { drgree } 1
$$

XIII. SOLUTIONS TO TYPICAL DIFFERENTIAL EQUATIONS.

$$
\begin{aligned}
& \text { dy } \\
& ----=A x+k \\
& d x \\
& d y=(A x+k) d x
\end{aligned}
$$

Hence, the function y can obtain by integration.

$$
\begin{aligned}
& \left\{\begin{array}{c}
d^{2} y \\
--- \\
d x^{2}
\end{array}\right\}^{2}+\underset{d x}{+---}=A x+k \quad \text { order: } 2 \text {; degree: } 2 \\
& \left\{\begin{array}{c}
d^{2} y \\
---- \\
d x^{2}
\end{array}\right\}+\left\{\begin{array}{c}
d y \\
---- \\
d x
\end{array}\right\}^{2}=A x+k \quad \text { order: } 2 \text {; degree: } 1
\end{aligned}
$$

