QUANTUM CHEMISTRY

Dr. A. DAYALAN, Former Professor & Head, Dept. of Chemistry,

LOYOLA COLLEGE (Autonomous), Chennai-34

QC-1.2-FUNCTIONS

I. REAL AND COMPLEX FUNCTIONS.

 $\Psi_1 = Asinx$ (Real)

 $\Psi_2 = iAsinx$ (Imaginary)

 Ψ_3 = Asinx+iAsinx (Complex)

 Ψ_4 = -iAsinx (Complex conjugate of Ψ_2) = Ψ_2^*

 Ψ_2 & Ψ_4 are complex conjugate to each other

 Ψ_5 = Asinx-iAsinx (Complex conjugate of Ψ_3) = Ψ_3^*

 $\Psi_3\,\&\,\Psi_5\,are$ complex conjugate to each other

 $\Psi_1 = \Psi_1^*(\Psi_1 \text{ is real})$

NB:

Ψ = Ψ^{*}(Ψ is real) ΨΨ^{*}(is real)z = r(cosθ + isinθ)

 $z^{n} = r^{n}e^{in\theta} = r^{n}(\cos\theta + i\sin\theta)^{n}$

 $=r^{n}(\cos \theta + i\sin \theta)$: *Demoviour* theorem.

Linear combinations

 Ψ_6 = Asinx + iBsinx (Complex) Ψ_7 = Asinx + iBcosx (Complex) Ψ_8 = Asinx - iBsinx (Complex)

 $\Psi_9 = Asinx - iBcosx$ (Complex)

HW:

Let

$$\begin{split} \Psi_1 &= A \sin x \quad ; \ \Psi_2 =- i A \sin x \\ \Psi_3 &= A(\sin x + i \sin x); \ \Psi_4 = A(\sin x - i \sin x) \\ \Psi_5 &= A e^{imx} = A(\cos mx + i \sin mx) = A(\cos x + i \sin x)^m \\ \Psi_6 &= A e^{-imx} = A(\cos mx - i \sin mx) = A(\cos x - i \sin x)^m \end{split}$$

Determine the following: (i) $\Psi_3 \Psi_3^*$ (ii) Ψ_3^2 (iii) Ψ_6^* (iv) $\Psi_6 \Psi_6^*$

II. ODD FUNCTIONS

- ★ A function f(x) is said to be "odd" if for every "x", there exists "-x" in the domain of the function such that : f(-x) = -f(x)
- Let f(x) = sinx; f(-x) = sin(-x) = -sinx = -f(x)
- ✤ An odd function is anti symmetric about y-axis.

Examples: x, x³, sinx, sinhx, ax²+bx ; ax²+bx+c

III. EVEN FUNCTIONS

- ➤ A function f(x) is said to be "even" if for every "x", there exists "-x" in the domain of the function such that : f(-x) = f(x)
- $\blacktriangleright \text{ Let } f(x) = \cos x \text{ ; } f(-x) = \cos(-x) = \cos x = f(x)$
- ➤ An even function is symmetric about y-axis.

Examples: x^2 , x^4 , cosx, coshx, $e^x + e^{-x}$, ax^2 , $ax^2 + c$

Problem 1: Prove that the function f(x) **is even**

$$f(x) = x \frac{a^{x}-1}{a^{x}+1}$$

IV. BASIC PROPERTIES OF ODD AND EVEN FUNCTIONS

- The sum of an even and odd function is neither even nor odd: sinx + cosx
- The sum of two even functions is even, and any constant multiple of an even function is even.
- The sum of two odd functions is odd, and any constant multiple of an odd function is odd.

 $x^4 + 2x^2 + 6$ is even $x^2\cos(x)$ is even $x^3\cos(x)$ is odd $5x^7 + 4\sin(x)$ is odd

- The **product** of two even functions is an even function.
- The product of two odd functions is an even function.
- The product of an even function and an odd function is an odd function.
- The **quotient** of two even functions is an even function.
- The quotient of two odd functions is an even function.

The quotient of an even function and an odd function is an odd function.

f(x)	g(x)	$f(x) \pm g(x)$	f(x)g(x)	f(x)/g(x)
Odd	odd	odd	even	even
odd	even	neither	odd	odd
even	even	even	even	even

While some functions are *neither* even nor odd

 $x^4 + 6x + 1$; $\cos(x) + x^5$; $x^3 + 1$; $\ln(x)$; a^x ; e^{-imx} ; e^{imx}

The derivative of an even function is odd.

◆ The derivative of an odd function is even.

- The integral of an odd function from -A to +A is zero.
- The integral of an even function from -A to +A is twice the integral from 0 to +A(Half interval).
- Determine each function given below as even, odd or neither.

1.
$$x^{4} + 6x^{2} + 1$$

2. $x\cos(x) + x^{3}$; $x\sin x$
3. $1/x$
4. $3x + 9$
5. $\sin(x^{2})$; $\sin^{2}x$; $\sin(x^{2})$; $\sin^{2}x^{2}$
6. $x^{3} + 1$
7. $\sin^{3}(x)$
8. $\sin^{2}(x^{2}) + x^{2} + 1$

V.CLOSED INTERVAL is an interval that includes the extreme limits : $a \le x \le b$.

VI. OPEN INTERVAL is an interval that does not include the extreme limits :

a < x < b

VII. ORTHOGONALFUNCTIONS

Two functions $\psi_1 \& \psi_2$ are said to be orthogonal in the range $a \le x \le b$ if the integral $\int \psi_1 \psi_2 dx = 0$ in the range $a \le x \le b$.

Examples: Asin(nx), Bcos(nx) for integral values of n.

VIII.NORMALIZED FUNCTIONS

A function ψ is said to be normalized in the range $a \le x \le b$ if the integral $\int \psi \psi^* dx = 1$ in the range $a \le x \le b$.

- Normalize $(-x^2/2)$ & Ax² in the range (-a, +a)
- ★ Normalize Asinx & Bcosx for $0 \le x \le \pi/2$
- Normalize Asinx & Bcosx in the range $(0, \pi)$
- Normalize Ae^x in the range (0, 1)

IX. ORTHONORMAL SET OF FUNCTIONS

A set of function, in a given range of limits, such that each one is normalized and orthogonal to each other

Examples:

(2/1)^{1/2}sin(n π x/1), for integral values of n and for $0 \le x \le 1$.

► $(1/2\pi)^{\frac{1}{2}}e^{-imx}$ for integral values of m and for $0 \le x \le 2\pi$

X.WELBEHAVED WAVE FUNCTIONS (Acceptable wave function)

Single valued, Continuous, Normalized, Orthogonal & should disappear at the extreme limits

XI. DIFFERENTIALEQUATIONS

dy---- = Ax + k ORdy = (Ax + k) dx dx

XII. ORDER AND DEGREE.

Order: The number of the highest derivative in a differential equation.

$$\frac{dy}{dx} = Ax + k \qquad \text{order: 1 ; degree: 1}$$

$$\frac{d^2y}{dx^2} = Ax + k \qquad \text{order: 2 ; degree: 1}$$

$$\left\{\frac{dy^2}{dx}\right\} = Ax + k \qquad \text{order: 1 ; degree: 2}$$

$$\begin{cases} d^2y \\ ---- \\ dx^2 \end{cases} = Ax + k \qquad \text{order: } 2 \text{ ; degree: } 1$$

$$\begin{cases} d^2y \\ -\cdots \\ dx^2 \end{cases}^2 + \frac{dy}{dx} = Ax + k \quad \text{order: } 2 \text{ ; degree: } 2 \end{cases}$$

$$\begin{cases} d^2y \\ ---- \\ dx^2 \end{cases} + \begin{cases} dy \\ ---- \\ dx \end{cases}^2 = Ax + k \qquad \text{order: } 2 \text{ ; degree: } 1 \end{cases}$$

$$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)^3 + \frac{\mathrm{d}y}{\mathrm{d}x} = \sin x \quad \text{order 2 and degree 3}$$

$$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} + 4x \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = y \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \mathrm{e}^y \quad \text{order 3} \quad \text{drgree 1}$$

XIII.SOLUTIONS TO TYPICAL DIFFERENTIAL EQUATIONS.

$$\frac{dy}{dx} = Ax + k$$

$$dy = (Ax + k) dx$$

Hence, the function y can obtain by integration.