M.Sc (Chemistry) ELECTRODE KINETICS (ELECTRODICS)-I

01-BUTLER - VOLMER Equation (Elementary Electrode Reaction)

1. Recall the following concepts:
(i) Coulomb.
(ii) Faraday.
(iii)Chemical equivalent
(iv)Electrochemical equivalent.
2. Faraday's laws of electrolysis (Electrolytic Cell)

First law: w $\alpha \mathrm{Q}$;
Second law: w $\alpha \mathrm{z}$.
Combination of both laws $\mathrm{w}=\mathrm{zIt}$.
(DC current of required potential (makes the dischargefeasible) and then only current I (rate of the reaction faster), cf: Photoelectric effect)

3. Charge transfer at an electrode.

(i) Diffusion or the migration of the elctroactive species.
(ii) Adsorption of the electroactive species
(iii)Change in hydration (primary, secondary and coordinated water molecules)
(iv) Transfer of e to or from the electroactive species. Discharge or charging
(v) Any chemicarreáction like

Gas evolution
Decomposition. E.g., $\mathrm{VO}_{3}{ }^{-}+4 \mathrm{H}^{+}+\mathrm{e} \mathrm{VO}^{2} \dagger+2 \mathrm{H}_{2} \mathrm{O}$
(vi)Diffusionor migration of the discharged or charged species to or away from the electrode.

4. Rate of an electro-chemical process

$\mathrm{M}=$ molecular weight; $\mathrm{n}=$ no of electron(s) involved.
$\mathrm{w}=\mathrm{zIt}($ Faraday's Laws)
5. Ohm's law (when there are no chemical reactions), V=IR. I vs V (applied potential) is linear passing through origin (Metallic conductors: slope $=1 / R$) - What will be the actual behavior of electrode towards ohmic behavior \qquad ?????
6. Electrolytic conductors: Plot of $\mathbf{I} v s \mathbf{V}$ (applied potential) is linear at the beginning passing through origin followed by a steep increase in slope-decomposition or discharge potential (i.e., The system obeys Ohm's law up to decomposition or discharge potential afterwards does not.

7. Need for relation between \mathbf{i} and \mathbf{V} for an electrode process - Butler-Volmer(1930Noble Prize) equation.

8. Over potential, $\boldsymbol{\eta}$

$$
\eta=\Delta \Phi-\Delta \Phi_{\mathrm{e}}\{\eta \text { negative for cathodic\& positive for anodic process }\}
$$

9. Study of the electrode process [Three electrode system]

Fig-1: Three electrode system: Two cells (IE\&TE and TE\&SCE) with TE as
Common electrode) - The present sefup is for the study of a anodic reaction. $\mathbf{T E}=$ Test electrode; $\mathbf{I E}=$ inert electrode; $\mathbf{S C E}=$ Ref electrode; $\mathbf{B}=\mathrm{DC}$ in put;

A = Ammeter;
$\mathbf{R h}=$ Rheostat to adjust the external resistance and thereby to adjust the external applied potential, $\Delta \phi$.

The electrode (TE)can be made -ve or +ve by connecting it to the -ve or +ve terminal of the external input followed by the adjustment of the rheostat
10. BUTLER- VOLMER equation - Elementary one electron process $\mathbf{A}+\mathbf{e} \underset{\mathrm{k}_{\mathrm{a}}}{\stackrel{\mathrm{k}_{\mathrm{c}}}{\rightleftarrows}} \mathbf{D} \quad$ Where, $\mathrm{k}_{\mathrm{c}}=$ cathodic\& $\mathrm{k}_{\mathrm{a}}=$ anodicreaction rate constants

Symbols and sign conventions:

Cathodic: Electrode connected to the -ve terminal of the external input, $\mathrm{k}_{\mathrm{c}},-\Delta \phi,-\eta$, $-\mathrm{i}, \mathrm{i}_{\mathrm{c}}, \mathrm{i}_{\text {forward }}, \beta$

Anodic: Electrode connected to the + ve terminal of the external input, $\mathrm{k}_{\mathrm{a}},+\Delta \phi,+\eta$,
$+i, i_{\mathrm{a}}, \mathrm{i}_{\text {backward }},(1-\beta)$
Reactions occur within the Double layer $10^{-8} \mathrm{~cm}$ [Very high potential gradient]

Faradic process: Charge transfer

Non-Faradic process:

Adsorption, desorption, hydration, dehydration.... etc

Fig-2: Energy level diagram for a reaction at an electrode
$\Delta \mathrm{G}_{\mathrm{c}}{ }^{*}=$ Chemical free energy of activation
$\Delta \mathrm{G}_{\mathrm{ec}} *=$ Electro-chemical free energy of activation
$\Delta \mathrm{G}^{*}=$ Total free energy of activation $=\Delta \mathrm{G}_{\mathrm{c}}{ }^{*}+\Delta \mathrm{G}_{\text {ec }}{ }^{*}$
Fig-3: Electro-chemical activation- Activation occurring at the "mid-point of the potential drop" giving a symmetrical curve, $\beta=1 / 2$

OHP = Outer Helmholts plane; IHP = Inner Helmholts plane
$\Delta \Phi(\mathrm{s})=$ Potential at the electrode.
$\Delta \Phi_{(\mathrm{M}, \mathrm{S})}=$ Potential at solution at distance, Y from the electrode

Distance from the electrode

$$
\begin{aligned}
& \mathrm{XY}=\text { Potential drop across the double layer At "O" } \\
& \Delta \Phi=1 / 2 \Delta \Phi(\text { Activation occurs at the midpoint of the potential drop). } \\
& \Delta \Phi_{(\mathrm{s})}=\Delta \Phi \text { (at the electrode) } \\
& \Delta \Phi_{(\mathrm{Ms})}=0 \quad \text { (outside the double layer) }
\end{aligned}
$$

SYAFMFETRY FACTOR

Fig-4: Electro-chemical activation- Activation occurring away from the "mid-point of Ghepotential drop" giving a non-symmetrical curve, $\beta \neq 1 / 2$
[Cathodic, β; Anodic, (1- β)]
$\Delta \Phi(s)=\beta \Delta \Phi+(1-\beta) \Delta \Phi$
\therefore The symmetry factor, $\boldsymbol{\beta}$ is a measure of the symmetry of energy profile curve of $\Delta \Phi(\mathrm{s})$ vs. distance
\therefore The symmetry factor β is the fractional contribution to $\Delta \Phi$ for the cathodicelectrodeprocess.

- :. Activation cannot occur at A or at D (i.e., neither at the reactant nor at the product)
.Hence, β or (1- β) cannot be zero or one. $0<\beta<1$
\bullet :. Symmetry factor, β is called transfer coefficient, α for multi step multi electron reactions (To be discussed later)

The Symmetry factor, β can also be defined as
Distance along the reaction coordinate between initial and activated state
$\beta=--$
Distance along the reaction coordinate between initial and final state (Prodt)
Once the activated state is attained, the rest of the job of getting converted in to product becomes a spontaneous process.

CATHODIC (Reduction) REACTION

Consider the electrode reaction: $\mathrm{A}+\mathrm{eD} \longrightarrow$
$\mathrm{i}=\mathrm{nf}$ Rate $=\mathrm{nFk}[\mathrm{A}]$
(Charge transfer at the electrode is fast \&hence considered asfirst-order)
According to stat.Mech., $\mathrm{k}=\left(\mathrm{k}_{\mathrm{b}} \mathrm{T} / \mathrm{h}\right) \mathrm{e}^{-\Delta \mathrm{G}^{*} / \mathrm{RT}} ; \mathrm{k}_{\mathrm{b}}$: Boltzmann constant
$\mathrm{i}_{\mathrm{c}}=\mathrm{nF}$ Rate $=\mathrm{nF} \mathrm{k}[\mathrm{A}]=\mathrm{nF}\left(\mathrm{k}_{\mathrm{b}} \mathrm{T} / \mathrm{h}\right) \mathrm{e}^{-\Delta \mathrm{G}^{*} / \mathrm{RT}}[\mathrm{A}]$
NB: The orders of most of the electro-chemical process are unity. The chemical reaction before or after the electro - chemical process may have all other possible orders.

Hence,
For the forward (cathodic) process:A+eD \rightarrow

$$
\begin{aligned}
& \Delta \mathbf{G}_{\mathbf{c}}{ }^{\boldsymbol{*}}=\Delta \mathbf{G}^{*}{ }_{\text {chem }}{ }^{\boldsymbol{+}} \Delta \mathbf{G}^{*}{ }_{\text {ele.chem }} \\
& =\Delta \mathrm{G}^{*}{ }_{\text {chem }}+\beta \Delta \Phi \mathrm{F} ; \beta=\text { symmetry factor for cathodic process } \\
& \mathbf{N B}: \Delta \mathrm{G}^{*} \text { ele.chem }=\mathrm{nFE}=\mathrm{FE} \text { (one 'e' process) }=\Delta \Phi \mathrm{F}=\beta \Delta \Phi \mathrm{F} \\
& \mathrm{i}_{\mathrm{c}}=\mathrm{nF}\left(\mathrm{k}_{\mathrm{b}} \mathrm{~T} / \mathrm{h}\right) \mathrm{e}^{-\Delta \mathrm{G}^{*} / \mathrm{RT}}[\mathrm{~A}] \\
& =n F\left(k_{b} T / h\right) e^{-\Delta G^{*} \text { chem } / R T} e^{-\beta \Delta \Phi F / R T}[A] \\
& \text { But, } \Delta \Phi=\Delta \Phi_{\mathrm{e}}+\eta \text {; where, } \Delta \Phi_{\mathrm{e}}=\Delta \Phi_{\mathrm{e}}{ }^{0}+\mathrm{RT} \operatorname{In}[\mathrm{~A}] \ldots \ldots \ldots \ldots . . \text {. . } 2 \text { ernst } \mathrm{Eq} \\
& \mathrm{i}_{\mathrm{c}}=\mathrm{nF}\left(\mathrm{k}_{\mathrm{b}} \mathrm{~T} / \mathrm{h}\right) \mathrm{e}^{-\mathrm{G}^{*} \text { chem./RT}} \mathrm{e}-\beta \Delta \Phi e \mathrm{~F} / \mathrm{RT}^{2} \mathrm{e}^{-\beta \eta \mathrm{F} / \mathrm{RT}^{2}}[\mathrm{~A}]=\mathrm{i}_{\mathrm{o}} \mathrm{e}^{-\beta \eta^{\mathrm{F} / R T}} \\
& \mathbf{i}_{\mathbf{c}}=\mathbf{i}_{o} \mathbf{e}^{-\beta \eta \mathbf{F} / \mathbf{R T}}
\end{aligned}
$$

Where, $\mathrm{i}_{\mathrm{o}}=\mathrm{nF}\left(\mathrm{k}_{\mathrm{b}} \mathrm{T} / \mathrm{h}\right) \mathrm{e}^{-\mathrm{G}^{*} \text { chem./RT }} \mathrm{e}^{-\beta \Delta \Phi e \mathrm{~F} / \mathrm{RT}}[\mathrm{A}]$
$\mathrm{i}_{0}=$ exchange or equilibrium current density.

ii) ANODIC (Oxidation ;Reverse) REACTION: $\mathbf{D} \rightarrow \mathbf{A + e}$

$$
\begin{aligned}
& \Delta \mathbf{G}_{\mathbf{a}}{ }^{*}=-\Delta \mathbf{G}^{*}{ }_{\text {chem }}-\Delta \mathbf{G}^{*}{ }_{\text {ele.chem }} \text { Iff } \Delta G^{*+} \text { ve for cathodicit will be -ve for anodic } \\
& =-\Delta \mathrm{G}^{*}{ }_{\text {chem }}-(1-\beta) \Delta \Phi \mathrm{F} ;(1-\beta)=\text { symmetry factor for anodic process }
\end{aligned}
$$

Therefore, $\mathrm{i}_{\mathrm{a}}=\mathrm{nF}\left(\mathrm{k}_{\mathrm{b}} \mathrm{T} / \mathrm{h}\right) \mathrm{e}^{\Delta \mathrm{G}^{*} \mathrm{chem} / \mathrm{RT}} \mathrm{e}^{(1-\beta) \Delta \Phi \mathrm{F} / \mathrm{RT}}[\mathrm{D}]$;

But, $\Delta \Phi=\Delta \Phi e+\eta$
$\mathrm{i}_{\mathrm{a}}=\mathrm{nF}\left(\mathrm{k}_{\mathrm{b}} \mathrm{T} / \mathrm{h}\right) \mathrm{e}^{-\mathrm{G}^{*} \mathrm{chem} \cdot / \mathrm{RT}} \mathrm{e}^{(1-\beta) \Delta \Phi e \mathrm{~F} / \mathrm{RT}^{2}} \mathrm{e}^{(1-\beta) \eta \mathrm{F} / \mathrm{RT}^{2}}[\mathrm{D}]$
$=i_{o} e^{(1-\beta) \beta \eta^{F / R T}}$
Where ; $\mathrm{i}_{\mathrm{o}}=\mathrm{nF}\left(\mathrm{k}_{\mathrm{b}} \mathrm{T} / \mathrm{h}\right) \mathrm{e}^{-\mathrm{G}^{*} \text { chem. } / \mathrm{RT}} \mathrm{e}^{(1-\beta) \Delta \Phi e \mathrm{~F} / \mathrm{RT}}[\mathrm{D}]=$ exchange or equilibrium current density.

Net current density, $\mathbf{i}=\mathbf{i}_{\mathrm{a}}-\mathbf{i}_{\mathrm{c}}=\mathbf{i}_{0}\left[\mathbf{e}^{(1-\beta) \eta \mathrm{F} / \mathrm{R}^{2}}-e^{-\mathrm{Fn}^{\mathrm{F} / R T}}\right]$ BUTLER - VOLMER Equation
Fig-5: Butler-Volmer Plot

Metal	System	Medium	$\mathbf{i}_{\text {o }}$	β
Mercury	$\mathrm{H}^{+} / \mathrm{H}_{2}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	7.9×10^{-13}	0.50
Lead	$\mathrm{H}^{+} / \mathrm{H}^{2}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	5.01×10^{-12}	-
Nickel	$\mathrm{H}^{+} / \mathrm{H}_{2}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	6.3×10^{-6}	0.58
Tungsten	$\mathrm{H}^{+} / \mathrm{H}_{2}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.25×10^{-6}	-
Platinum	$\mathrm{H}^{+} / \mathrm{H}_{2}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	7.9×10^{-4}	-
Gold	$\mathrm{H}^{+} / \mathrm{H}_{2}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	2.51×10^{-4}	-
Mercury	$\mathrm{Cr}^{3+} / \mathrm{Cr}^{2+}$	KCl^{3}	1×10^{-6}	-
Platinum	$\mathrm{Ce}^{4+} / \mathrm{Ce}^{3+}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	3.98×10^{-5}	0.75
Iridium	$\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.58×10^{-3}	-
Rhodium	$\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.73×10^{-3}	-
Platinum	$\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	2.51×10^{-3}	0.58
Palladinum	$\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	6.3×10^{-3}	-
Calomel	$\mathrm{Hg}, \mathrm{Hg}_{2} \mathrm{Cl}_{2}$	KCl^{2}		

- Highly polarisable. Does not allow charge (e) to pass through ; e.g., $\mathrm{Hg} / \mathrm{H}^{+} / \mathrm{H}_{2}$
- Discharge of H^{+}is difficult on Hg surface
- Highly non-polarisable. Allows charge (e) to pass through easily ; e.g., Calomel electrode
$\mathbf{A}+\mathbf{e} \frac{\mathbf{k}_{\mathbf{c}}}{\mathbf{k}_{\mathbf{a}}} \mathbf{D} \quad\left(\mathrm{k}_{\mathbf{c}}=\right.$ Cathodic $\& \mathrm{k}_{\mathrm{a}}=$ Anodic rate constants]

NB: $\quad \mathrm{i}_{0}=n F\left(\mathrm{k}_{\mathrm{b}} \mathrm{T} / \mathrm{h}\right) \mathrm{e}^{\Delta \mathrm{G}^{*} c h e m . R T} e^{-\beta) \Delta \Phi e ~ F / R T}[A] \quad \mathrm{OR}$ $=n F\left(k_{b} T / h\right) e^{\Delta G^{*} c h e m . / R T} e^{(1-\beta) \Delta \Phi e ~ F / R T}[D]$, called exchange or equilibrium c.d
> Exchange means exchange of electrons between reactants and products at equilibrium
> Exchange c.d depends on T , concentration of the reactants \& products and the equilibrium potential, Φ_{e}. At equilibrium,they act suitably in order cancel their effect on i_{o}, so that at equilibrium, $\mathrm{i}_{\mathrm{a}}=\mathrm{i}_{\mathrm{c}}=\mathrm{i}_{\mathrm{o}}$
$>$ Exchange c.ds normally refers at 1 M concentrations unless otherwise stated.

Factors deciding the magnitude of exchange (equilibrium) current density, i_{0}

$$
\begin{aligned}
& \text { NB: } \quad i_{0}=n F(k b T / h) e^{\Delta G^{*} c h e m . / R T} e^{-\beta) \Delta \Phi e ~ F / R T}[A] \quad O R \\
& =n F\left(k_{b} T / h\right) e^{\Delta G^{*} c h e m . / R T} e^{(1-\beta) \Delta \Phi e ~ F / R T}[D] \text {, called exchange or equilibrium } c . d \\
& \mathbf{i}_{\mathbf{o}}=\mathbf{n F} \text { cathodic rate }=\mathbf{n F} \text { anodic rate }=i_{c}=i_{a}
\end{aligned}
$$

(i) Rate constant of the chemical reaction as decided by $\left.\mathrm{k}_{\mathrm{chem}}=\mathrm{k}_{\mathrm{b}} \mathrm{T} / \mathrm{h}\right) \mathrm{e}^{\Delta \mathrm{G}^{*} \mathrm{chem} / R T}$
(ii) Concentration of the electro-active species
(iii)Mobility of the ion on either side of the double layer
(iv) Equilibrium potential, $\Delta \Phi \mathrm{e}$, which in turn depends on the concentration and nature of the electrode
(v) Temperature

Factors affecting the magnitude of current density, i:

- The magnitude of the current density across an electrode depends on the magnitude of the over voltage ratherthan the applied potential even though over voltage depends on applied potential.
$>$ The magnitude of the current density increases exponentially with η. The electrode is non-ohmic. Höwever, it can show ohmic behavior at very low η as it could be shown latter here.
$>$ The magnitude of the current density depends on \mathbf{T} as $e^{(1-\beta) \eta^{F / R T}}$ or $e^{-\beta \eta^{F / R T}}$

The current density, is directly proportional to exchange or equilibrium current density, $\mathbf{i}_{\mathbf{o}}$ which in turn depends on several factors as indicated above.

Problem: 1

A potential of 0.2 V is applied to $\mathrm{Cu} / \mathrm{Cu}^{2+}(0.01 \mathrm{M})$ electrode. Calculate the cathodic over potential

$$
\begin{aligned}
& \mathrm{Cu}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Cu} \\
& \eta=\Delta \Phi-\Delta \Phi_{\mathrm{e}}\{\eta \text { negative for cathodic\& positive for anodic process }\} \\
& \Delta \Phi_{\mathrm{e}}=\Delta \Phi_{\mathrm{e}}{ }^{\mathrm{o}}+(\mathrm{RT} / \mathrm{nF}) \ln (\mathrm{Rxt} / \mathrm{Pdt}) \\
& \Delta \Phi_{\mathrm{e}}=0.34+(\mathrm{RT} / \mathrm{nF}) \ln \left(10^{-2}\right)=0.28 \mathrm{~V}
\end{aligned}
$$

\{more negative \& less spontaneous, $\Delta \mathrm{G}=-\mathrm{nFE}$)
Reduction: RP positive $\& \eta$ negative
$\eta=0.2-0.28=-0.08$ The reductionreaction will undergo.

Problem: 2

A potential of 0.2 V is applied to $\mathrm{Na} / \mathrm{Na}^{+}(0.01 \mathrm{M})$ electrode. Calculate the cathodic over potential

$$
\begin{aligned}
& \mathrm{Na}^{+}+\mathrm{e} \rightarrow \mathrm{Na} \\
& \eta=\Delta \Phi-\Delta \Phi_{\mathrm{e}}\{\eta \text { negative for cathodić\& positive for anodic process }\} \\
& \Delta \Phi_{\mathrm{e}}=\Delta \Phi_{\mathrm{e}}{ }^{\mathrm{o}}+(\mathrm{RT} / \mathrm{nF}) \ln (\mathrm{Rxt} / \mathrm{Pdt}) \\
& \Delta \Phi_{\mathrm{e}}
\end{aligned}=-2.71+(\mathrm{RT} / \mathrm{nF}) \ln \left(10^{-2}\right) \text {. }
$$

Reduction: RP positive \& η negative
$\eta=0.2-(-2.83)=-3.03$ The reduction reaction will not undergo

Problem: 3

A potential of 0.2 V is applied to $\mathrm{Cl}_{2} / \mathrm{Cl}^{-}(0.01 \mathrm{M})$ electrode. Calculate the cathodic over potential
$1 / 2 \mathrm{Cl}_{2}+\mathrm{e} \rightarrow \mathrm{Cl}^{-}$
$\eta=\Delta \Phi-\Delta \Phi_{e}\{\eta$ negative for cathodic\& positive for anodic process $\}$
$\Delta \Phi_{\mathrm{e}}=\Delta \Phi_{\mathrm{e}}{ }^{\circ}+(\mathrm{RT} / \mathrm{nF}) \ln (\mathrm{Rxt} / \mathrm{Pdt})$
$\Delta \Phi_{\mathrm{e}}=1.36+(\mathrm{RT} / \mathrm{nF}) \ln \left(1 / 10^{-2}\right)$
$=1.48 \mathrm{~V}$ \{ more positive $\&$ more spontaneous, $\Delta \mathrm{G}=-\mathrm{nFE}$)
Reduction: RP positive \& η negative
$\eta=0.2-(1.48)=-1.28$ The reduction reaction will undergo.

