# M.Sc (Chemistry)

## **ELECTRODE KINETICS (ELECTRODICS)-I**

**01-BUTLER – VOLMER** *Equation* (Elementary Electrode Reaction)

### 1. Recall the following concepts:

- (i) Coulomb.
- (ii) Faraday.
- (iii)Chemical equivalent
- (iv)Electrochemical equivalent.

## 2. Faraday's laws of electrolysis (Electrolytic Cell)

*First law*: w αQ ;

Second law: w a z.

Combination of both laws w = zIt.

(DC current of required potential (makes the dischargefeasible) and then only

current I (rate of the reaction faster), cf: Photoelectric effect)

## **3.** Charge transfer at an electrode.

- (i) Diffusion or the migration of the electroactive species.
- (ii) Adsorption of the electroactive species

(iii)Change in hydration (primary, secondary and coordinated water molecules)

- (iv)Transfer of e to or from the electroactive species. Discharge or charging
- (v) Any chemical reaction like

Gas evolution

Decomposition. E.g.,  $VO_3^- + 4 H^+ + e VO^2 + 2H_2O$ 

(vi)Diffusionor migration of the discharged or charged species to or away from the electrode.

## 4. Rate of an electro-chemical process

w = zIt(Faraday's Laws)

```
M / n
= ------ It; Where, I = current in ampere; t = time in seconds; F = 96495 c
F
\mathbf{nFw}
```

```
I= ----- = nF(Rate) ; which means that Rateα current
Mt
```

- 5. Ohm's law (when there are no chemical reactions), V=IR. I vs V (applied potential) is linear passing through origin (Metallic conductors: slope = 1 / R) What will be the actual behavior of electrode towards ohmic behavior.....??????
- 6. Electrolytic conductors: Plot of I vsV(applied potential) is linear at the beginning passing through origin followed by a steep increase in slope-decomposition or discharge potential (i.e., The system obeys Ohm's law up to decomposition or discharge potential afterwards does not.



- Need for relation between i and V for an electrode process Butler-Volmer(1930 -Noble Prize) equation.
- 8. Over potential, η

 $\eta = \Delta \Phi - \Delta \Phi_e \{\eta \text{ negative for cathodic & positive for anodic process} \}$ 

#### 9. Study of the electrode process [Three electrode system]



Fig-1: Three electrode system: Two cells (IE&TE and TE&SCE) with TE as

Common electrode) - The present setup is for the study of a anodic reaction.

TE = Test electrode; IE = inert electrode; SCE = Ref electrode; B = DC in put;

 $\mathbf{A} = \text{Ammeter};$ 

**Rh** = Rheostat to adjust the external resistance and thereby to adjust the external applied potential,  $\Delta \phi$ .

The electrode (**TE**)can be made –ve or +ve by connecting it to the –ve or +ve terminal of the external input followed by the adjustment of the rheostat

10. BUTLER- VOLMER equation - Elementary one electron process

$$\mathbf{A} + \mathbf{e} \xrightarrow{k_c} \mathbf{D}$$
 Where,  $k_c = \text{cathodic} \& k_a = \text{anodicreaction rate constants}$ 

Symbols and sign conventions:

Cathodic: Electrode connected to the -ve terminal of the external input,  $k_c$ ,  $-\Delta \phi$ ,  $-\eta$ ,

-i, ic, iforward, β

Anodic: Electrode connected to the + ve terminal of the external input,  $k_a$ ,  $+\Delta \phi$ ,  $+\eta$ ,

+i, i<sub>a</sub>, i<sub>backward</sub>, (1- $\beta$ )

Reactions occur within the Double layer 10<sup>-8</sup>cm [Very high potential gradient]

**01-BV Equation** (Elementary Electrode Reaction)

Faradic process: Charge transfer

Non - Faradic process:

Adsorption, desorption, hydration, dehydration.... etc



Distance from electrode

#### Fig-2: Energy level diagram for a reaction at an electrode

 $\Delta G_c^*$  = Chemical free energy of activation

 $\Delta G_{ec}$  \* = Electro-chemical free energy of activation

 $\Delta G^*$  = Total free energy of activation =  $\Delta G_c^* + \Delta G_{ec}^*$ 

Fig-3: Electro-chemical activation- Activation occurring at the "mid-point of the potential drop" giving a symmetrical curve,  $\beta = \frac{1}{2}$ 

OHP = Outer Helmholts plane; IHP = Inner Helmholts plane

 $\Delta \Phi(s)$  = Potential at the electrode.

 $\Delta \Phi_{(M,S)}$  = Potential at solution at distance, Y from the electrode





**01-BV Equation** (Elementary Electrode Reaction)

XY = Potential drop across the double layer At "O"

 $\Delta \Phi = \frac{1}{2} \Delta \Phi$ (Activation occurs at the midpoint of the potential drop).

SYMMETRY FACTOR

 $\Delta \Phi_{(s)} = \Delta \Phi$  (at the electrode)

 $\Delta \Phi_{(Ms)} = 0$ 

(outside the double layer)



Fig-4: Electro-chemical activation- Activation occurring away from the "mid-point of figure potential drop" giving a non-symmetrical curve,  $\beta \neq \frac{1}{2}$ 

[Cathodic,  $\beta$ ; Anodic,  $(1 - \beta)$ ]

 $\Delta \Phi(s) = \beta \Delta \Phi + (1 - \beta) \Delta \Phi$ 

::. The symmetry factor,  $\beta$  is a measure of the symmetry of energy profile curve of  $\Delta \Phi(s)$  vs. distance

::. The symmetry factor  $\beta$  is the fractional contribution to  $\Delta \Phi$  for the

cathodicelectrodeprocess.

• :. Activation cannot occur at A or at D (i.e., neither at the reactant nor at the product)

.Hence,  $\beta$  or  $(1 - \beta)$  cannot be zero or one.  $0 < \beta < 1$ 

• :. Symmetry factor,  $\beta$  is called transfer coefficient,  $\alpha$  for multi step multi electron reactions

(To be discussed later)

The Symmetry factor,  $\beta$  can also be defined as

Distance along the reaction coordinate between initial and activated state

β = -----

Distance along the reaction coordinate between initial and final state (Prodt)

Once the activated state is attained, the rest of the job of getting converted in to product becomes a spontaneous process.

#### **CATHODIC** (Reduction) **REACTION**

**Consider** the electrode reaction:  $A + eD \longrightarrow$ 

i = nf Rate = nFk[A]

(Charge transfer at the electrode is fast &hence considered asfirst-order)

According to stat.Mech.,  $\mathbf{k} = (\mathbf{k}_b \text{ T} / \mathbf{h}) e^{-\Delta G^*/RT}$ ;  $\mathbf{k}_b$ : Boltzmann constant

 $i_c = nF Rate = nF k[A] = nF(k_bT / h)e^{-\Delta G^*/RT}[A]$ 

NB: The orders of most of the electro-chemical process are unity. The chemical reaction before or after the electro - chemical process may have all other possible orders.

Hence,

For the forward (cathodic) process:  $A + eD \rightarrow$ 

$$\Delta \mathbf{G}_{c}^{*} = \Delta \mathbf{G}^{*}_{chem} + \Delta \mathbf{G}^{*}_{ele.chem}$$

=  $\Delta G^*_{chem}$  +  $\beta \Delta \Phi$  F; $\beta$ = symmetry factor for cathodic process

**NB**: $\Delta G^*_{ele,chem}$  = nFE =FE (one 'e' process) =  $\Delta \Phi$  F= $\beta \Delta \Phi$  F

 $i_c = nF(k_bT / h)e^{-\Delta G^*/RT}[A]$ 

=  $nF(k_bT/h) e^{-\Delta G^* chem./RT} e^{-\beta \Delta \Phi F/RT}[A]$ 

But,  $\Delta \Phi = \Delta \Phi_e + \eta$ ; where,  $\Delta \Phi_e = \Delta \Phi_e^{0} + RT \ln[A]$ .....Nernst Eq

فع فع

 $i_c = nF(k_bT/h) e^{-G^*chem./RT} e^{-\beta\Delta\Phi e F/RT} e^{-\beta\eta F/RT} [A] = i_0 e^{-\beta\eta F/RT}$ 

 $i_c = i_o \ e^{-\beta \eta F/RT}$ 

Dr.A.DAYALAN, Former Prof.&Head

i<sub>o</sub>= exchange or equilibrium current density.

ii) ANODIC (Oxidation ; Reverse) REACTION:  $D \rightarrow A + e$ 

 $\Delta \mathbf{G}_{\mathbf{a}}^* = -\Delta \mathbf{G}^*_{\text{chem}} - \Delta \mathbf{G}^*_{\text{ele.chem}}; If \Delta G^* + ve \text{ for cathodicit will be -ve for anodic}$ 

=  $-\Delta G^*_{\text{chem}}$  -  $(1-\beta)\Delta \Phi$  F;  $(1-\beta)$  = symmetry factor for anodic process

Therefore,  $i_a = nF (k_bT/h) e^{\Delta G^* \text{chem/RT}} e^{(1-\beta)\Delta \Phi F/RT} [D];$ 

But,  $\Delta \Phi = \Delta \Phi e + \eta$ 

 $i_a=nF(k_bT/h) e^{-G^*chem./RT} e^{(1-\beta)\Delta\Phi e F/RT} e^{(1-\beta)\eta F/RT} [D]$ 

=  $i_o e^{(1-\beta)\beta\eta F/RT}$ 

Where ;  $i_0 = nF(k_bT/h) e^{-G^*chem./RT} e^{(1-\beta)\Delta\Phi e F/RT}$  Exchange or equilibrium current

density.

Net current density,  $\mathbf{i} = \mathbf{i}_a - \mathbf{i}_c = \mathbf{i}_0 [e^{(1-\beta)\eta F/RT}]$  BUTLER – VOLMER Equation

Fig 5: Butler-Volmer Plot



| Metal      | System                             | Medium    | io                       | β    |
|------------|------------------------------------|-----------|--------------------------|------|
| Mercury    | $H^+/H_2$                          | $H_2SO_4$ | 7.9x10 <sup>-13</sup>    | 0.50 |
| Lead       | $H^+/H^2$                          | $H_2SO_4$ | 5.01 x 10 <sup>-12</sup> | -    |
| Nickel     | $H^+/H_2$                          | $H_2SO_4$ | 6.3 x 10 <sup>-6</sup>   | 0.58 |
| Tungsten   | $H^+/H_2$                          | $H_2SO_4$ | 1.25 x 10 <sup>-6</sup>  | -    |
| Platinum   | $H^+/H_2$                          | $H_2SO_4$ | 7.9 x 10 <sup>-4</sup>   | -    |
| Gold       | $H^+/H_2$                          | $H_2SO_4$ | 2.51 x 10 <sup>-4</sup>  | -    |
| Mercury    | $Cr^{3+}/Cr^{2+}$                  | KCl       | 1 x 10 <sup>-6</sup>     | -    |
| Platinum   | Ce <sup>4+</sup> /Ce <sup>3+</sup> | $H_2SO_4$ | 3.98 x 10 <sup>-5</sup>  | 0.75 |
| Iridium    | Fe <sup>3+</sup> /Fe <sup>2+</sup> | $H_2SO_4$ | 1.58 x 10 <sup>-3</sup>  | -    |
| Rhodium    | Fe <sup>3+</sup> /Fe <sup>2+</sup> | $H_2SO_4$ | 1.73 x 10 <sup>-3</sup>  | -    |
| Platinum   | Fe <sup>3+</sup> /Fe <sup>2+</sup> | $H_2SO_4$ | 2.51 x 10 <sup>-3</sup>  | 0.58 |
| Palladinum |                                    | $H_2SO_4$ | 6.3 x10 <sup>-3</sup>    | -    |
| Calomel    | $Hg, Hg_2Cl_2$                     | KCl       |                          |      |

🗞 🇞 🎗 🇞 🇞 🇞

- Highly polarisable. Does not allow charge (e) to pass through ; e.g., Hg/H+/H2
- Discharge of H<sup>+</sup> is difficult on Hg surface >>
- Highly non-polarisable. Allows charge (e) to pass through easily ; e.g., Calomel electrode

A + e 
$$\xrightarrow{k_c}$$
 D  $(k_c = Cathodic \& k_a = Anodic rate constants]$ 

NB:

- $i_o = nF(k_bT/h) e^{\Delta G^* chem./RT} e^{-\beta)\Delta \Phi e F/RT} [A] OR$ 
  - =  $nF(k_bT/h) e^{\Delta G^* chem./RT} e^{(1-\beta)\Delta \Phi e F/RT}[D]$ , called exchange or equilibrium c.d
- Exchange means exchange of electrons between reactants and products at equilibrium
- Exchange c.d depends on T, concentration of the reactants & products and the equilibrium potential,  $\Phi_e$ . At equilibrium, they act suitably in order cancel their effect on  $i_o$ , so that at equilibrium,  $i_a = i_c = i_o$
- Exchange c.ds normally refers at 1 M concentrations unless otherwise stated.

## Factors deciding the magnitude of exchange (equilibrium) current density,io

NB:  $i_o = nF(k_bT/h) e^{\Delta G^* chem./RT} e^{-\beta)\Delta \Phi e \ F/RT} [A] OR$ 

Dr.A.DAYALAN, Former Prof.&Head

 $= nF(k_bT/h) \ e^{\Delta G^*chem./RT}e^{(1-\beta)\Delta\Phi e \ F/RT}[D], \ \text{called exchange or equilibrium c.d}$   $\mathbf{i_0} = \mathbf{nFcathodic \ rate} = \mathbf{nF} \ \text{anodic \ rate} = \mathbf{i_c} = \mathbf{i_a}$ 

- (i) Rate constant of the chemical reaction as decided by  $k_{chem} = k_b T/h e^{\Delta G^*chem/RT}$
- (ii) Concentration of the electro-active species
- (iii)Mobility of the ion on either side of the double layer
- (iv) Equilibrium potential,  $\Delta \Phi e$  , which in turn depends on the concentration and nature of the electrode
- (v) Temperature

## Factors affecting the magnitude of current density, i:

- The magnitude of the current density across an electrode depends on the magnitude of the *over voltage* rather than the applied potential even though over voltage depends on applied potential.
- The magnitude of the current density increases *exponentially with η*. The electrode is non-ohmic. However, it can show ohmic behavior at very low η as it could be shown latter here.
- > The magnitude of the current density depends on **T** as  $e^{(1-\beta)\eta F/RT}$  or  $e^{-\beta\eta F/RT}$
- The current density, is directly proportional to exchange or equilibrium current density, i<sub>o</sub> which in turn depends on several factors as indicated above.

**01-BV Equation** (Elementary Electrode Reaction)

#### Problem:1

A potential of 0.2 V is applied to Cu/Cu<sup>2+</sup>(0.01M) electrode. Calculate the cathodic over potential

 $Cu^{2+} + 2e \rightarrow Cu$   $\eta = \Delta \Phi - \Delta \Phi_e \{\eta \text{ negative for cathodic & positive for anodic process} \}$   $\Delta \Phi_e = \Delta \Phi_e^o + (RT/nF) \ln(Rxt/Pdt)$  $\Delta \Phi_e = 0.34 + (RT/nF) \ln(10^{-2}) = 0.28V$ 

{more negative & less spontaneous,  $\Delta G = -nFE$ )

Reduction: RP positive & negative

 $\eta = 0.2-0.28 = -0.08$  The reduction reaction will undergo.

#### Problem: 2

A potential of 0.2 V is applied to Na/Na $^{+}(0.01M)$  electrode. Calculate the

cathodic over potential

 $Na^+ + e \rightarrow Na$ 

 $\eta = \Delta \Phi - \Delta \Phi_e \{\eta \text{ negative for cathodic } \phi \text{ positive for anodic process} \}$ 

 $\Delta \Phi_{\rm e} = \Delta \Phi_{\rm e}^{\rm o} + ({\rm RT/nF}) \ln({\rm Rxt/Pdt})$ 

 $\Delta \Phi_e = -2.71 + (RT/nF) \ln(10^{-2})$ 

=-2.83V {more negative & less spontaneous,  $\Delta G = -nFE$ )

Reduction: RP positive & negative

 $\eta = 0.2 - (-2.83) + 3.03$  The reduction reaction will not undergo

#### Problem: 3

A potential of 0.2 V is applied to  $Cl_2/Cl^-$  (0.01M) electrode. Calculate the cathodic over potential

 $\frac{1}{2}$  Cl<sub>2</sub> + e  $\rightarrow$  Cl<sup>-</sup>

 $\eta = \Delta \Phi - \Delta \Phi_e \{\eta \text{ negative for cathodic \& positive for anodic process}\}$ 

 $\Delta \Phi_e = \Delta \Phi_e^o + (RT/nF) \ln(Rxt/Pdt)$ 

 $\Delta \Phi_e = 1.36 + (RT/nF) \ln(1/10^{-2})$ 

=1.48V {more positive & more spontaneous,  $\Delta G = -nFE$ )

Reduction: RP positive &n negative

 $\eta = 0.2$ –(1.48) = -1.28 *The reduction reaction will undergo.*