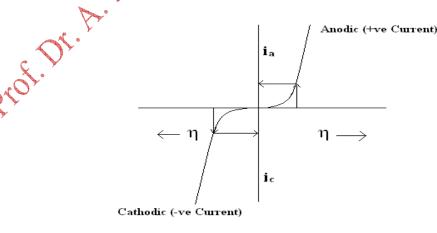


$$i = i_0 [e^{\eta F/2RT} - e^{-\eta F/2RT}] = 2 i_0 \sinh(\eta F/2RT) = i_0(\eta F/RT)$$
, For $\eta << 1$

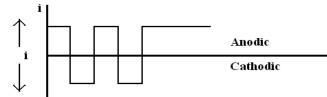
$$i = i_0 \left[e^{(1-\beta)\eta F/RT} - e^{-\beta\eta F/RT} \right] = i_0 \left[e^x - e^{-y} \right] = i_0 \left[1 + \dots + \dots - (1 - \frac{y}{1!} + \frac{y}{2!} - \dots) \right]$$

$$1! \quad 2! \quad 1! \quad 2!$$

M.Sc (Chemistry)


LECTURE NOTES

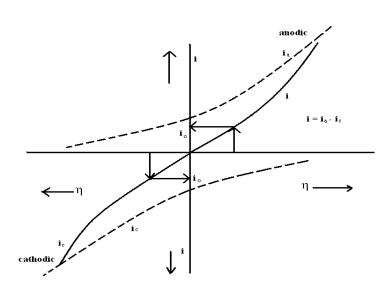
Terms with higher powers of x & y can be neglected


 $i = i_0 [x + y] = i_0(\eta F/RT)$

(i) Plot of i vs η for $\beta = 0.5$

Consider a definite over potential, η be varied rapidly and periodically as $+\eta$ or $-\eta$. The corresponding period current across the electrode +i or -i will be as given below:)

13

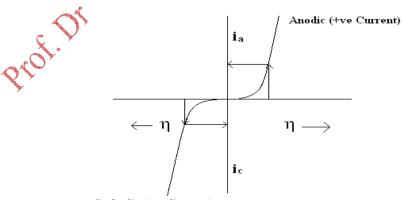

Variation of current for a definite periodic variation of applied potential, η (*The electrode does not act as rectifier*)

NOTE: A definite over potential, η variation periodically as $+\eta$ or $-\eta$ varies current periodical across the electrode as +i or -i equally like a cos function.

ματατάτα ατάτα ατάτα ατάτα ατά τα ατάτα ατά τα Dr.A.DAYALAN, Former Prof & Head Β.V Eq(**02-Discussion-Symmetry factor,β**) 14

Butler-Volmer plot of i vs. η ($\beta = 0.5$)

$$\begin{split} &i=i_o \; [e^{(1-\beta)\eta F/RT} - e^{-\beta\eta F/RT}] \\ &i_a=i_c \\ &i_+=i_- \; \text{ for all } \eta \end{split}$$


The electrode responses equal current (anodic and cathodic) for a given same over potential when $\beta = 0.5$. Equal net current (i₊ and i₋) flows on both sides of equal over potential. (ii) $\beta < 0.5$: Electrode shows greater tendency for anodic process & acts as ANODIC RECTIFIER

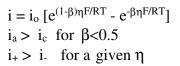
 $i = i_0 \left[e^{(1-\beta)\eta F/RT} - e^{-\beta\eta F/RT} \right]$

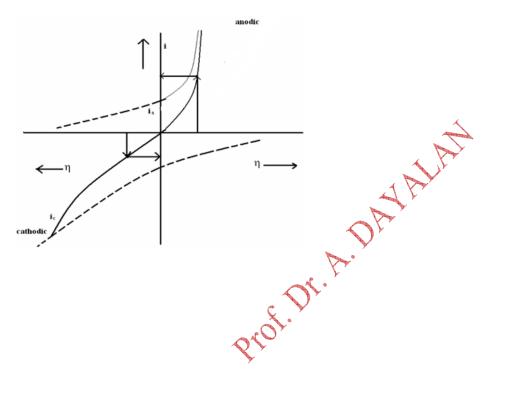

The above equation for $\beta < 0.5$ or $(1 - \beta) > 0.5$ becomes $e^{(1-\beta)\eta F/RT} > e^{-\beta\eta F/RT}$ for a given magnitude of η .

That is $i_a > i_c$

1.

Cathodic (-ve Current)





Variation of current for a definite periodic variation of applied potential, η (*The electrode acts as anodic rectifier*)

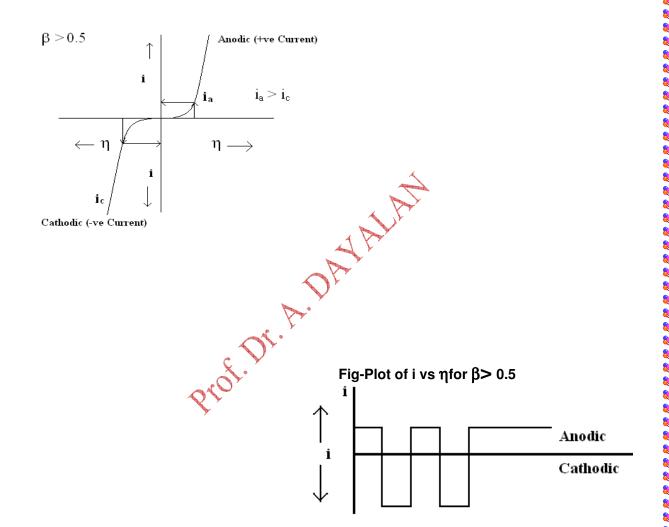
NOTE: Positive over potential across the electrode allows mostly positive current across it provided its $\beta < 0.5$

BUTLER-VOLMER plot of **i vs.** η (β < 0.5); $i_a > i_c$

The electrode responses un equal current (anodic> cathodic) for a given same over potential when β < **0.5.** Unequal net current (i₊ > i₋) flows on both sides of equal over potential Note: when $\eta = 0$

i) ia = ic = io

2.


ii) Deviation ($i_a \neq i_c$) occurs only when $\eta > 0$ or < 0

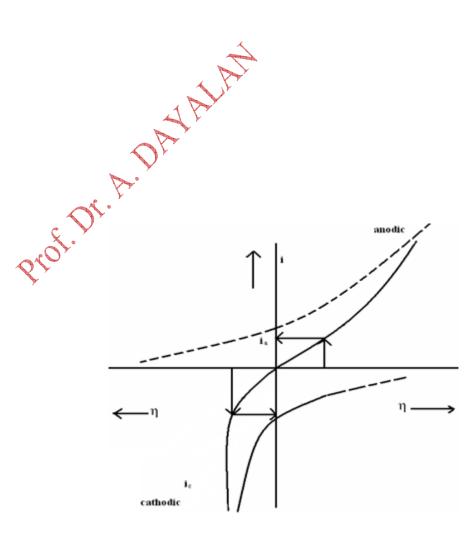
(iii) $\beta > 0.5$: Electrode shows greater tendency for cathodic process & acts as **CATHODIC RECTIFIER**.

 $i = i_0 \left[e^{(1-\beta)\eta F/RT} - e^{-\beta\eta F/RT} \right]$

The above equation for $\beta > 0.5$ becomes $e^{(1-\beta)\eta F/RT} < e^{-\beta\eta F/RT}$ for a given

magnitude of η . That is $i_a < i_c$

Variation of current for a definite periodic variation of applied potential. η (*The electrode acts as cathodic rectifier*) NOTE: Negative over potential across the electrode allows mostly negative current across it provided its $\beta > 0.5$ Hence, the electrode can pass only anodic current or cathodic current depending on the value of β (not equal to 0.5) periodically when connected it to an AC in put. That is it can act as a rectifier if β is n equal to 0.5. The efficiency of the rectification depends on how much the electrode has it's β away fro 0.5.


 $\begin{array}{l} \textbf{Butler-Volmer} \ \text{plot of } \ \textbf{i vs. } \eta \ (\beta > 0.5); \ i_a > i_c \\ i = i_o \ [e^{(1-\beta)\eta F/RT} - e^{-\beta\eta F/RT}] \\ i_a < \ i_c \ \ \text{for } \ \beta > 0.5 \\ i_+ < \ i_- \ \& \ \text{for a given } \eta \end{array}$

The electrode responses unequal current (anodic< cathodic) for a given same over potential when

 $\beta > 0.5$. Unequal net current ($i_+ < i_-$) flows on both sides of equal over potential.

Note: when $\eta = 0$ i) $i_a = i_c = i_0$

ii) Deviation ($i_a \neq i_c$) occurs only when $\eta >> 0$ or << 0

