24

ELECTRODE KINETICS – ELECTRODICS-I

4. PROBLEMS & SOLUTION (Butler-Volmer Equation)

1 High field approximation (HFA) : $|\eta| > 0.1$ V

Anodic current for +ve η ; $\mathbf{i} = \mathbf{i}_0 \exp\{(\mathbf{1}-\beta)\eta \mathbf{F}/\mathbf{RT}\}$

Cathodic current for -ve η ; i = i₀exp{- $\beta\eta$ F/RT}

2 Low field approximation (LFA) : $|\eta| < 0.01$ V

$$i = 2i_0 \sin \frac{F\eta}{2RT} \approx 2i_0 \frac{F\eta}{2RT} = i_0 \frac{F\eta}{RT}$$

3 For $\eta \approx 0.01$ V - 0.1V

Use the BV-equation.

4. BV equation can be used as it is under any circumstances.

PROBLEM-1

Compare the rates of the reaction: Ag⁺ + Ag^+ Ag at $\eta = -0.2V$ & $\eta = 0.2V$.

i = nF x Rate

Hence , rate of a reaction α current density Therefore, we have to compare the cathodic rate in both η

Cathodic rate α i_c; i_c = i₀ exp{- $\beta\eta$ F/RT}

Ratio of rates = Ratio of the cds = $\frac{(i_c)\eta = -0.2}{(i_c)\eta = +0.2}$ = $\frac{e^{-0.5X(-0.2)\frac{96500}{8.314X298}}}{e^{-0.5X(0.2)\frac{96500}{8.31X298}}}$

 $=\frac{49}{0.02}=2450$

N.B: A small change in potential -0.2 to +2V (0.4 unit) increases the rate by 2450 times.

PROBLEM-2

For $\eta = 10 \text{mV}$, i = 0.62mA through 2cm^2 Pt electrode in H⁺/H₂. What will be i for

(a) $\eta = 100 \text{ mV}$ (b)-100mV .Assume the symmetry factor as 0.5

 $H^++e \rightarrow \frac{1}{2} H_2$

BV equation to be used as such without any modification for given over potential range.

For
$$\eta = 10 \text{ mV} = 0.01 \text{ V}$$
; I/A = 0.62/2 = 0.31 mAcm⁻²

 $i = i_0 (e^{(1-\beta)\eta F/RT} - e^{-\beta\eta F/RT})$

: $0.31 = i_0 [e^{0.5 \times 0.01 / F / RT} - e^{-0.5 \times 0.01 F / RT}]$

: $i_0 = 0.79 \text{ mA cm}^{-2}$

 $\eta = 100 \text{ mV} = 0.1 \text{V}$ (a)

$$i = 0.79 (e^{0.5 \times 0.1 \times 96500/8.314 \times 298} - e^{-0..5 \times 0.1396500/8.314 \times 298})$$

$$i = -5.42 \text{ mA cm}^{-2}$$

$$Iy, i = +5.42 \text{ mA cm}^{-2}$$

 $i = -5.42 \text{ mA cm}^{-2}$

Similarly, $i = +5.42 \text{ mA cm}^{-2}$ **(b)**

PROBLEM-3

The exchange current density of Pt/H₂,H⁺ is 0.79 mAcm⁻² at 25⁰C. Calculate the current density across it when the over potential is (a) 10 mV (b) -200 mV

- $\eta = 10 \text{ mV} = 0.01 \text{ V}$ a) $i = i_0 \eta F/RT = 0.79 \times 10/25.68 = 0.308 mA cm^{-2}$
- $\eta = -200 \text{ mV} = -0.2 \text{ V}$, negative (net cathodic current) b) $i = i_0 e^{-\beta \eta F/RT}$ $= 0.79 e^{-0.5 \times 0.2 \times 96,500/RT} = 38.79 mAcm^{-2}$ $i = i_a - i_c = -i_c = -38.79 \text{ mAcm}^{-2}$

PROBLEM-4

The exchange current density of Pt / H_2 , $H^+_{(aq)}$ is 0.79 mA cm⁻². What

current will flow through SHE when the p.d. across the electrode is 5mV at 298K?

$$\Delta \Phi = \Delta \Phi + \eta$$

$$5mV = 0 + \eta$$
 : $\eta = 5mV = 0.005 V (< 0.01V)$

Use linear approximation

$$i = i_0 \frac{\eta F}{RT} = \frac{0.00079 \times 0.005 \times 96,495}{8,314 \times 298} = 0.154 m A cm^{-2}$$

Over potential is positive. Therefore, the net current across the electrode is due to net anodic process.: $\frac{1}{2}$ H₂ \rightarrow H^+ +e.

PROBLEM-5

Calculate the effective resistance across 1cm² of

(a) Pt, H₂, H⁺; $i_0 = 0.79$ mA cm⁻²

(b) Hg, H₂, H⁺ $i_0 = 0.79 \times 10^{-12}$ A cm

What conclusion you can draw from the result?

When $\eta < 0.01 \text{ V}$

$$I = i_o \frac{\eta F}{RT} \therefore \eta \frac{RT}{i_b F} i \quad (V = IR) \quad \therefore \text{ Re } isance = \frac{RT}{i_b F}$$

(a)Resistance, $\rho = \frac{8.314x298}{0.790x10^{-3}x96,495} = 32.5ohmcm$

Less resistance, the electrode can be less polarisable (*non-polsrisable*)

(b)Similarly,
$$\rho = \frac{8.314x298}{0.790x10^{-12}x96495} = 3.2x10^{10} ohm$$

Greater resistance, the electrode can be more *polarisable*

26

PROBLEM-6

In an experiment involving Pt, H_{1} , H^{+} electrode, the following data were obtained. Determine β and i_0

 η /mV: 50 100 150 200 250

i/*mAcm*⁻² : 2.66 8.91 29.9 100 335 evaluate β and i₀

Ans: $\beta = 0.38$; $i_0 = 0.78 mAcm^{-2}$

PROBLEM-7

For the system Pt /Fe³⁺, Fe²⁺ at 298K the i were measured as shown below:

-100 -120 -150 -200 50 80 100 120 150 200 -80 η (mV): $i (\text{mA cm}^{-2})$: 8.01 16.1 25.17 41 82.4 264 5.45 -8.71 -11.9 -16.3 -26 -56.6

Calculate i₀ and β

$$\dot{\boldsymbol{l}} = i_a = i_0 e^{(1-\beta)\eta F/RT}$$

$$\ln i = \ln i_0 + \frac{(1-\beta)\eta F}{RT} \text{ for } \eta > 0 \text{ (anodic, +ve over potential)}$$

$$\ln i = \ln i_0 - \frac{\beta \eta F}{RT} \text{ for } \eta < 0 \text{ (eathodic -ve over potential)}$$

$$\text{Plot ln i vs } \eta \text{ . Evaluate } i_0 \text{ and } \beta \text{ from slope & intercept.}$$

$$\text{Ans:} \quad \beta = 0.60; \quad i_0 = 2.51 \text{ mAcm}^{-2}$$

PROBLEM-8

The data given below refer to C.D. through 2cm² Pt electrode in contact with Fe²⁺ ,Fe³⁺ at 298K.

Find i₀ and β for the process : Fe³⁺ + e \rightarrow Fe²⁺

$$\eta(mV)$$
50100150200250I(mA)8.82558131298

Note : $\eta = 50 \times 10^{-3}$ to 250×10^{-3} ; i.e. > 0.1V

$$i = i_0 e^{(1-\beta)\eta F/RT}$$

$$\ln i = \ln i_0 + \frac{(1-\beta)\eta F}{RT} \quad ; \quad \text{Plot } \ln i \text{ vs } \eta$$

The high η values give straight line.

Incept = 0.916 = ln i₀ ; Slope = 0.0163 = $\frac{(1-\beta)F}{RT}$

Ans: $i_0 = 2.5 \text{ mA}$ $\beta = 0.58$

Note : The plot will be non-linear for $\eta < 100 \text{ mV}$

PROBLEM-9

The exchange current density of Pt/Fe³⁺, Fe²⁺_{aq} is 2.5 mA cm⁻². Calculate the current density across the electrode at 25 ° C maintained at 1V when [Fe²⁺] = 0.1 M and [Fe⁺³] = 0.2 M (SRP = 0.771V, 8 = 0.58) Fe³⁺+e \rightarrow Fe²⁺ $\Delta \phi_e = \Delta \phi_e^o - \frac{0.05915}{n} \log \frac{Fe^{2+}}{Fe^{2+}} = 0.771 - 0.05915 \log \frac{1}{2} = 0.788 \text{ V}.$ $\Delta \phi = \Delta \phi_e + \eta$ $1.0 = 0.788 + \eta$ $\therefore \eta = 0.212 \text{ V}. (+\text{ve}, >0.01 \text{ V})$ $\therefore i \cong i_a = i_0 e^{(1-\beta)\eta F/RT} = 2.5 \text{ e}^{-0.42 \times 0.212 \text{ F/RT}}$ $= 80 \text{ mA cm}^{-2}$

PROBLEM-10

What are the minimum potential at which (a) Zn (b) Cu can be deposited from aqueous solutions when their concentrations are (i) 1.0 M (ii) 0.01 M ; (SRP :

Zn/Zn²⁺ = -0.76, **Cu/Cu**²⁺ = 0.34V)
(a) (i) 1 M Zn²⁺
$$\Delta \phi = \Delta \phi_e + \eta = -0.76 + \eta$$

 $\eta = \Delta \phi + 0.76 < 0$

 $\Delta \phi = -0.76 - \frac{0.05915}{2} \log \frac{1}{10^{-2}} = -0.82.$

For η to be –ve for cathodic process $\Delta \phi < 0.3^2$

 $\Delta \phi = \Delta \phi_e + \eta = 0.28 + \eta \quad : \quad \eta = \Delta \phi - 0.28 < 0$

 $\Delta \phi e = \Delta \phi - \frac{0.05915}{2} \log C u^{2+} = 0.34 - \frac{0.05915}{2} \log \frac{1}{10^{-2}} = 0.28 \text{ V}$

Note : Even if $\Delta \phi = 0$ no potential is applied Cu will get deposited.

For copper to be deposited (cathodic process) η must be negative. $\therefore \Delta \phi < 0.28$

 $\Delta \phi = \Delta \phi_e + \eta = -0.82 + \eta$

 $\therefore \eta = \Delta \phi + 0.82 < 0$

 $\Delta \phi = \Delta \phi_e + \eta = 0.34 + \eta$

 $\therefore \Delta \phi < -0.82$

 $\therefore \eta = \Delta \phi - 0.34$

(ii) 0.01 M

(b) (i) $\Delta \phi_e = 0.34$

 $\therefore \Delta \phi < -0.76 V$

(ii) 0.01M Zn²⁺