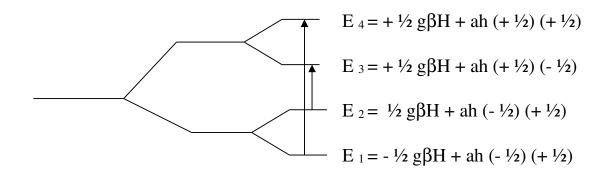
File-2: Nuclear Hyperfine Splitting.

Hydrogen atom

The **Energy levels** of an odd electron due to nuclear splitting is given by

$$E = E_s g \beta H + ah M_s M_1.$$


Where

 M_s = Electron spin (- $\frac{1}{2}$ or + $\frac{1}{2}$)

 M_1 = Nuclear spin (I, I-1, I-2.....-1)

a = Hyperfine coupling constant.

The different energy levels for a nuclear spin ½ in the decreasing order of energy can be obtained as follows:

Selection rule:

$$\Delta m_{\rm I} = 0; \Delta m_{\rm s} = 1$$

$$\Delta E_a = E_4 - E_1 = g\beta H + \frac{1}{2} ah$$
 (High energy line)

$$\Delta E_b = E_3 - E_2 = g\beta H - \frac{1}{2} ah$$
 (High energy line)

$$\Delta E_a - \Delta E_b = ah.$$

Hence, the hyper fine coupling constant, 'A' can be calculated.